Bristol spinout raises more than £17.5m to deliver cutting-edge composites

University of Bristol spinout company iCOMAT has secured more than £17.5m in funding to deliver lighter transport solutions faster and at a lower cost.

iCOMAT is one of the leading manufacturers of advanced composite structures for the aerospace and automotive industries Image credit: iCOMAT

Founded by Dr Evangelos Zympeloudis, iCOMAT is one of the leading manufacturers of advanced composite structures for the aerospace and automotive industries.

iCOMAT’s Rapid Tow Shearing (RTS) process means carbon fibre tapes can be used in physically curved positions without being damaged or becoming defective.

Unlike traditional methods which create components by layering straight fibre layers, iCOMAT’s solution allows for the fibres to be directed precisely, optimising the structural property at any given point. The technology can significantly reduce weight compared to existing commercial solutions, and considerably improve production rates.

The investment round was led by 8VC, a technology and bio-sciences venture capitalist firm, alongside the NATO Innovation Fund. Other investor partners include Syensgo Ventures and existing iCOMAT investors Velocity Partners VC.

The Bristol-based company has had a long affiliation with SETsquared and its academic partners at the University of Bristol.

iCOMAT is currently working with more than 25 customers from across the aerospace, defence and automotive sectors, and has successfully delivered parts for demanding applications including fighter aircraft panels, space launcher structures, and Formula 1 components.

To meet demand, iCOMAT is in the process of building its first production factory in Gloucester. The state-of-the-art facility will house three RTS production lines, alongside an array of other advanced processing equipment. It is anticipated that the factory will be fully operational by the end of 2024.

iCOMAT founder and CEO, Dr Evangelos Zympeloudis, said: “Our RTS process not only offers unparalleled structural efficiency, but unlocks fully automated production workflows.

“We are thrilled to partner with our investors and accelerate progress toward our mission – to revolutionise transportation by delivering the lightest structures and vehicles possible.”

Bristol scientists to participate in £42.5M national Centre of Excellence in advanced materials

The University of Bristol and its Bristol Composites Institute is part of a new Defence Science and Technology Laboratory (Dstl) funded £42.5M partnership with academia, industry and RTOs to deliver ground-breaking new research into materials for extreme environments.

 

Advanced materials play a vital role in keeping people and equipment safe in the harsh physical environments such as polar or tropical heat, shock, space and extreme water depth. The new Defence Materials Centre of Excellence (DMEx) will be led by the Henry Royce Institute along with 23 other partners from academic, industry and research organisations. Using leading edge technology, the Bristol Composites Institute, along with other researchers across the Science and Engineering Faculty will contribute to this national effort in advanced materials research.

 

Regius Professor Phil Withers FRENg FRS, Chief Scientist at the Henry Royce Institute and Regius Professor at the University of Manchester, said: “I am very excited about this opportunity for the Royce to team up with Catapults, industry, other universities and Dstl to bring many of the brightest minds and state of the art capabilities together to undertake materials research and development in support of the UK.”

 

Stephen Hallett, who led the University of Bristol’s participation in the bid and will represent the Air Domain as Partner Principle on the DMEx Science Board said: “It is great to be part of this successful consortium, that will allow Bristol researchers to contribute their expertise and skills.

 

As the DMEx centre gets underway and gathers momentum, research at Bristol will support the upscaling of exciting new materials and technology and feed into the growth of advanced materials activity, which is estimated at £14.4 billion in gross value to the UK economy.

 

Written by Simon Quinn, BCI Engagement Manager.

Net Zero Challenges Policy Project

The Bristol Composites Institute (BCI) has recently welcomed Dr Jack Dury, a Civil Service Fast Streamer, on a 6 month secondment to identify how academia, the National Composites Centre (NNC) and industry can best influence and inform future policy making and practice so that composite materials are utilised to their full potential to meet the global challenge of Net Zero.

The work will identify policy blockers, workshop solutions through engagement with the composites community, and summarise findings in a white paper. The white paper will make the case for composites, describe the policy blockers and how Governments can support the composites industry, in addition to what the future regulatory landscape will look like and potential solutions.

To support the work, please complete this survey on your experiences of the industrial use of composite materials and government policy. The findings will be disseminated widely in autumn 2024.

For further information, or to engage with the work, please contact jack.dury@bristol.ac.uk.

CoSEM CDT STEM Outreach Day

On the 20th May, our CoSEM CDT hosted a STEM Outreach Day for a group of 40 Sixth-Form pupils from Katharine Lady Berkeley’s School in Gloucestershire. Led by the current CDT and PhD students, there were four activities that ran throughout the day, highlighting the exciting opportunities in Composites Engineering.

The EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing (CoSEM CDT) welcomed Sixth Form pupils from Katharine Lady Berkeley’s (KLB) School in Gloucestershire. The CoSEM CDT students and Aerospace PhD students led activities that showcased the work they are engaged in and gave a taster of the type of exciting research being done in the programme.

After a Welcome from Dr Jemma Rowlandson and mini-lecture on Aeronautics from CoSEM Student Matthew Lillywhite, the pupils spent the day in General Engineering laboratory for a variety of hands-on activities. One activity, created by Dr. Ben Woods, was the creation of an aeroplane wing which required pupils in small groups to make decisions to craft a wing that took into consideration aerodynamics and the lift/drag ratio.

The KLB pupils also utilised a crushing apparatus devised by the University’s NextCOMP research team. Using jelly and dried pasta, the pupils were tasked with creating a sample that could withstand the most weight. In an additional NextCOMP activity, the pupils experimented with reinforcing chocolate bars and seeing how they performed under a pendulum test.

The final activity was to create a marble run, and under guidance from Dr Jemma Rowlandson the groups competed to build and test marble runs that met certain parameters.

Jurg Laderach, Maths teacher from KLB school said: “I was so impressed by the interactions between your department and our students. This is exactly how outreach should be done! I overheard many good conversations about career options and your students were brilliant at encouraging our students to choose the path that is right for them and go with what they enjoy. Your students talked with infectious passion about what they do.”

Additional support to run the day was given by: Jo Gildersleve (NextCOMP), Dr Jemma Rowlandson, Dr Ben Woods and Matthew Lillywhite, UoB Active Outreach team, and the CDT Directors and Staff.

 

A group of Sixth Form students are being taking part in the NextCOMP Crusher activity, guided by a current CDT student.A group of Sixth Form students are being taking part in the NextCOMP Crusher activity,    guided by a current CDT student. Photo credit: James Griffith

 

 

A group of Sixth Form students engaged in the activity of creating an aeroplane wing. A group of Sixth Form students engaged in the activity of creating an aeroplane wing. Photo credit: James Griffith

 

A group of Sixth Form students testing their Marble Run.  A group of Sixth Form students testing their Marble Run. Photo credit: James Griffith

Bristol Composites Institute makes two key appointments to enable new technology partnerships

The Bristol Composites Institute (BCI) at the University of Bristol has appointed two prominent sector leaders as Honorary Industrial Professors.

The BCI has appointed Faye Smith OBE, one of the UK’s foremost authorities on composite materials, and Mike Hinton, a World Fellow of the International Committee on Composite Materials.

Bristol Composites Institute’s new Honorary Industrial Professors Faye Smith OBE and Mike Hinton

Both appointees have provided significant support for the work of the industry-led Composites Leadership Forum (CLF) and contributed input to the 2016 Composites Strategy published by the CLF and the Department for Business, Energy and Industrial Strategy.

Commenting on the appointments, Professor Ole Thomsen, Co-Director of the BCI, said: “We continually seek new ways to encourage intellectual diversity and feel that these appointments will facilitate mutual learning and strengthen our ties to the national agenda.”

The BCI is a specialist research institute which launched in 2017. The Institute combines cutting edge fundamental and applied science with strong industrial links to deliver sustainable composites solutions for the benefit of society and the global community.

It is hoped the new Honorary Industrial Professors can strengthen the reach of the BCI’s research across different sectors, with a view to building new technology partnerships that can help solve some of engineering’s grand challenges.

Faye Smith OBE frequently engages with decision makers in academia, Government and industry, while Mike Hinton is a senior advisor to the High Value Manufacturing Catapult, supporting the development of its strategy, and an advisor to the government on technology needs and strategic opportunities.

They will provide wider benefits to the University through guest lectures for academic staff and students, as well as sharing their expertise with wider professional services teams via open talks on strategy development and technology road-mapping.

For more information about Bristol Composites Institute, please visit: Bristol Composites Institute | Bristol Composites Institute | University of Bristol.

CIMComp Hub Storytelling Workshop Review

by Umeir Khan

Creating a compelling and impactful story can be challenging. Fortunately, there are tools at hand to engage our audiences and craft a message that is pitch-perfect.

Following on from the success of prior workshops coordinated by the CIMComp Researcher’s Network, early April saw a fantastic turnout from current PhDs/EngD students for the “Storytelling for Engagement” activity, hosted at the University of Nottingham’s campus, and delivered by material scientist / professional storyteller – Dr Anna Ploszajski.

Many items of consideration were brought up: the type of audience you are presenting to, understanding their motivations and playing with the narrative hooks that drive the dramatic tension in a story. Unsurprisingly, a lot of parallels can be found in our favourite films, the ‘what if?’ that starts the journey for a protagonist to the ‘what if’ that sparks our own research.

Overall, it was a splendid event which helped demystify the route to effective research communication and impact. Highly recommended!

Mystery of moths’ warning sound production explained in new study

The workings of the ultrasonic warning sounds produced by the wings of a species of moth have been revealed by researchers at the University of Bristol.

Bristol Composites Institute (BCI) Academics Prof. Alberto Pirrera and Dr. Rainer Groh, along with Prof. Marc Holderied and Research Associate Dr. Hernaldo Mendoza Nava in Biological Sciences at the University of Bristol have successfully had a paper published in the ‘Proceedings of the National Academy of Sciences’ (PNAS).

The scientists recently discovered that moths of the genus Yponomeuta (so-called ermine moths) have evolved a very special acoustic defence mechanism against their echolocating predators—bats.

Ermine moths produce ultrasonic clicking sounds twice per wingbeat cycle using a minute corrugated membrane in their hindwing. Strikingly, these moths lack hearing organs and are therefore not aware of their unique defence mechanism, nor do they have the capability to control it using muscular action.

In the study, published today in Proceedings of the National Academy of Sciences, an interdisciplinary team of engineers and biologists from Bristol show how individual ridges of a corrugated patch in the hindwings of ermine moths snap-through because of in-flight wing folding. The sudden snap-through of these features vibrates an adjacent membrane, significantly amplifying the strength and direction of the produced sound. Owing to its passive in-flight actuation, this sound-producing organ is known as an ‘aeroelastic tymbal’.

Marc Holderied, Professor of Sensory Biology at the School of Biological Sciences, explained: “Our goal in this research was to understand how the corrugations in these tymbals can buckle and snap through in a choreographed way to produce a chain of broadband clicks. With this study, we unfolded the biomechanics that triggers the buckling sequence and shed light on how the clicking sounds are emitted through tymbal resonance.”

 

The study’s first author, Hernaldo Mendoza Nava, who investigated the mechanics of the aeroelastic tymbal as a PhD student at the EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science of the Bristol Composites Institute (BCI), said: “Sound production and radiation is linked to mechanical vibration, for example in the skin of a drum or a loudspeaker.

“In ermine moths, the snap-through buckling events act like drumbeats at the edge of a tymbal drum, exciting a much larger portion of the wing to vibrate and radiate sound. As a result, these millimetre-sized tymbals can produce ultrasounds at the equivalent level of a lively human conversation.”

To uncover the mechanics of the aeroelastic tymbal, Hernando combined state-of-the-art techniques from biology and engineering mechanics. The biological characterisation of the wing’s morphology and material properties ultimately led to detailed computer simulations of the snap-through response and sound production that match recorded moth signals in frequency, structure, amplitude, and direction.

Rainer Groh, Senior Lecturer in Digital Engineering of Structures at the BCI added: “The integration of various methods across the sciences with a consistent information flow across discipline boundaries in the spirit of ‘team science’ is what made this study unique and a success. In addition, without the amazing modern capabilities inimaging, data analysis and computation, uncovering the mechanics of this complex biological phenomenon would not have been possible.”

The discovery will help researchers understand many other insect species with similar sound production mechanisms, filling a page of anti-bat acoustic defences in the book on the age-old arms race between echolocating bats and their insect prey.

Structural buckling and sound production are rarely studied together, despite being reciprocal phenomena. In addition, buckling occurs as a sudden large deformation which can be attractive as a shape-changing mechanism in the field of morphing structures, such as in the aerospace industry, where engineers are looking to optimise the aerodynamic performance of wings.

Alberto Pirrera, Professor of Nonlinear Structural Mechanics at the BCI, concluded: “In the realm of engineering design, nonlinear elastic responses, such as buckling and snap-through instabilities, have traditionally been perceived as failure modes to be avoided. In our research, we have been advocating a paradigm shift and have demonstrated that buckling events can be strategically leveraged to imbue structures with smart functionality or enhanced mass-efficiency. Yponomeuta’s aeroelastic tymbal embodies the concept of beneficial nonlinearity.

“The natural world, once again, serves as a source of inspiration.”

The research team anticipates that through bioinspiration, aeroelastic tymbals will encourage novel developments in the context of morphing structures, acoustic structural monitoring and soft robotics.

 

Paper:

Buckling-induced sound production in the aeroelastic tymbals of Yponomeuta (pnas.org) by Hernaldo Mendoza Nava, Marc Holderied, Alberto Pirrera and Rainer Groh in Proceedings of the National Academy of Sciences of the USA.

You can also listen to the episode  ‘This week in science: moths’ anti-bat signal, fish who count and GMO crops at home : NPR‘ published February 8 2024 on the NPR Podcast.

Engineering Doctorates in Composite Materials, Sustainability and Manufacture

 

 

 

 

Opportunity for doctoral studies at Bristol Composites Institute and National Composites Centre.

Type of award Engineering Doctorate

Department Mechanical Engineering, Civil Engineering, Aerospace Engineering, Research group BCI

Scholarship Details An enhanced stipend of £24,917 for 2024/25, a fee waiver and generous research financial support for the successful candidates.

Duration 4 years

Eligibility Home/EU (UK settled status) with permanent UK residency

Start Date Flexible from October 2024

The NCC has supported the Industrial Doctorate Centre (IDC) in Composites Manufacture for many years. We are now seeking high calibre candidates to join our IDC and take up one of three new studentships. You will be based at the National Composites Centre (NCC) and will work on pre-commercial, yet industrially focused, cutting-edge research, whilst following a taught programme at University of Bristol.

We are seeking highly motivated and committed individuals with an eye on the future, who are interested in conducting stimulating and essential industrial research and have a passion for finding sustainable solutions.

We are offering two EngD projects that focus on ceramic matrix composites (CMCs). Interest in CMCs is gathering pace because of their lightweight properties and ability to withstand extreme temperatures applications such as fusion energy, hypersonic flight and space vehicles. There are many challenges in producing components from these materials, so the two projects seek to develop new and exciting manufacturing procedures for the future:

Automated fibre deposition (AFP) of non-oxide CMCs

  • State of the art research on investigating automation manufacturing with CMCs using AFP technology to minimise costs and create more consistent materials.
  • NCC have previously demonstrated AFP deposition of oxide CMCs, but non-oxide CMCs significant technical challenges.
  • The EngD project will focus on formulating and testing a new non-oxide material that will be a UK first to be used in an AFP process.
  • The non-oxide material will be capable of operating at temperatures of around 3000 oC.
  • The outcome will be new manufacturing procedure that will have wide ranging impact in industry.
  • As the successful candidate, your interest in materials science and automation will unlock doors to next-generation applications in renewable energy and beyond.

Compression Moulding of CMCs

  • Compression moulding is a cost-effective manufacturing method which can produce complex shapes not achievable with other manufacturing processes.
  • The EngD project will investigate new approaches to compression moulding to produce component that can withstand ultra-high temperatures.
  • The research will result in methodologies to produce components that can go above temperatures that are achievable with current metallic materials.
  • The outcome will be a new manufacturing process to rapidly produce CMC components.
  • As the successful candidate, you will have an appetite for how hands-on materials research can expose new opportunities for UK industry.

We are also offering an EngD project that will provide a means to decarbonise future aviation:

Cryogenic composites for hydrogen storage

  • Hydrogen must be stored as a liquid to achieve the energy density needed for many aircraft applications.
  • Composites have the advantage of being lightweight and strong for this use, but their application at low temperature is restricted.
  • The EngD project will focus on finding the most viable solution for composites in hydrogen storage.
  • The performance of different materials produced by a range of manufacturing processes will be investigated at low temperature.
  • Novel methods of material characterisation at low temperatures will be developed and exploited in storage vessel design.
  • As the successful candidate, your interest in brand new, developmental testing methods will be used as the basis for design and certification of the future hydrogen economy.

Candidate Requirements

Applicants must hold/achieve a minimum a 2:1 MEng or merit at Masters level or equivalent in engineering, physics or chemistry. Applicants without a master’s qualification may be considered on an exceptional basis, provided they hold a first-class undergraduate degree. Please note, acceptance will also depend on evidence of readiness to pursue a research degree and performance at interview.

To apply please complete and submit this online form and send your CV and transcript of results to caroline.perkins@bristol.ac.uk.

Closing date:  12th February 2024.

Balancing Environmental and Socioeconomic Sustainability: A Case Study on Heat Pumps and the Path to Net Zero for Engineering Education

We recently published a case study on the feasibility of heat pumps to reach net zero in the Engineering Professor’s Council (EPC) ethics toolkit, which is available under a CC BY-SA 4.0 license.1 The EPC is a representative body that provides a range of toolkits with resources designed to help educators and trainers integrate aspects including sustainability, ethics, and enterprise into teaching.  

Engineering is key to technological, economic, and societal progress and plays a vital role in moving towards a sustainable future. We have a significant challenge in engineering education: the tendency to view engineering as a purely technical discipline within an apolitical and acultural bubble. However, collaborations involving multiple stakeholders – industry, governments, consumers – are vital to drive change and achieve effective sustainable development by setting policies and incentives that encourage growth and adoption of low-impact technologies. It is important our engineers of the future are aware of our wider professional responsibilities including the social, economic, and cultural context in which they operate.  

Figure 2: AI-generated image illustrating the competition between new and old heating technologies. 2 

This case study was designed to integrate the socioeconomic aspects of sustainability into the engineering challenge of sustainable heating in the UK. Heating is currently responsible for one-third of the UK’s annual carbon footprint, of which 17 % is associated with space heating of homes – comparable to the contribution of petrol and diesel cars.3 Heat pumps are a potential alternative to natural gas boilers, particularly for domestic heating. A heat pump receives heat (from the air, ground, or water) and work (in the form of electricity to a compressor) and then outputs the heat to a hot reservoir (the building you are heating). Worldwide adoption of heat pumps is growing rapidly with the UK Government pledging to increase the number of heat pumps installed to over 600,000 per year by 2028.4 

In this case study students participate in a guided discovery, applying their thermodynamics knowledge alongside discussions to explore the wider themes of sustainability. We have run a version of this study for two-years with undergraduate engineering students as part of their second-year thermodynamics unit. They navigate the need to balance performance, cost, and impact on the consumer. In a memorable part of the session students discover that the lifetime cost of ground-source heat pumps can equal or surpass that of natural gas boilers, due to their high capital cost and the current high cost of energy. This revelation around the increased cost of energy for renewables was a surprise to quite a few students who expected the renewable, greener option to be cheaper and lead to a shift in perspective.  

Prior to this, we ask students to select their preferred heat pump technology (air-source or ground source). The majority select the ground-source heat pump because it has a better thermodynamic performance. The interplay between the improved performance but high capital cost of the ground-source heat pump is used to draw out an important principle: that the ideal or most perfect solution is not always necessary for an effective outcome and that engineers often navigate a balance between performance and cost. Air-source heat pumps, whilst having a lower performance, have a much lower capital cost, installation footprint, and fewer constraints, and so are used quite effectively in practice. Alongside this, the differences in capital investment of these heat pumps allows students to consider how aspects of policy, primarily the importance of bursaries or subsidies, can make renewable technologies more attractive to consumers and increase uptake.  

Figure 1: AI-generated image illustrating the uncertainty around heat pump technology and energy prices. 5 

 

A final key focus of this case study is the social dimension of sustainability, particularly considering consumer needs. Ultimately, even if you offset the capital cost of a heat pump, it is the consumer who will need pay the energy bill and there is growing concern around the affordability of energy. In the UK, electricity costs remain closely tied to natural gas prices and are four-times the cost. Consequently, even though heat pumps can require only up to a quarter of the energy that boilers do for the same heating output, the financial impact on consumers can be comparable or even greater. This is especially important in the context of unstable energy prices and increasing energy poverty. The UK faces a real challenge in the quality of its housing stock, with significant heat loss from homes disproportionately affecting low-income communities.6 Indiscriminately installing heat pumps in properties that have not been properly evaluated or modified can lead to additional financial strains.  

Students really engaged with the different aspects of this case study and feedback has been very positive, which inspired the submission to the EPC ethics toolkit. The real-world applicability, workshop-style lectures, and link to wider global themes were aspects they particularly appreciated. Further case studies are available in the ethics toolkit and the EPC plans to release a sustainability-specific toolkit early next year.  

 

References/Further Reading 

  1. Rowlandson, J. L. Case study: Feasibility of installing heat pumps at scale to reach net zero – Engineering Professors Council. https://epc.ac.uk/toolkit/case-study-feasibility-of-installing-heat-pumps-at-scale-to-reach-net-zero/.
  2. OpenAI. [AI Generated Image] Prompt: Generate an image of a heat pump and gas boiler in a boxing match. ChatGPT [Large Lang. Model. (2023).
  3. Decarbonising heat in homes – Business, Energy and Industrial Strategy Committee. https://publications.parliament.uk/pa/cm5802/cmselect/cmbeis/1038/report.html.
  4. Energy Security Bill factsheet: Low-carbon heat scheme – GOV.UK. https://www.gov.uk/government/publications/energy-security-bill-factsheets/energy-security-bill-factsheet-low-carbon-heat-scheme.
  5. OpenAI. [AI Generated Image] Prompt: An air source heat pump showing the uncertainty around the technology and energy prices. ChatGPT [Large Language Model] at https://chat.openai.com (2023).
  6. Bolton, P., Kennedy, S. & Hinson, S. Fuel poverty in the UK. at https://commonslibrary.parliament.uk/research-briefings/cbp-8730/.

Bringing Composites to Street Youth Work

Crushing jelly in a mobile van parked on a street in Bristol? Finding the links between silica sea sponges and aeroplanes whilst eating toasties? Playing snap with composite cards?  Not your average day in Bristol Composites Institute… instead a new and enriching experience in the Discover Composites Youth Club on Wheels project!

The Youth Club on Wheels from Young Bristol takes youth work out into numerous hard to reach areas of Bristol.  The skilled youth workers and their large mobile van provide a safe haven for young people to come together, chat and play games. Equipped with wifi, a large screen and a seating area, the van is strategically parked where young people are likely to be – for example across the road from the skatepark, or in the centre of a housing estate.

Children being shown a composites based experiment

NextCOMP have been working with Young Bristol and University of Bristol Public Engagement specialists to co-produce a “workshop in a box” to enthuse and inspire the next generation of composite engineers. Funded by FUTURES, the project is a pilot, and aims to devise a set of activities including guidance documents which can be delivered to young people by non-technical specialists.  The project seeks to strike the balance of designing for accessibility in the environment while still being interesting and different, aiming to spark curiosity in the intended audience. The hope is that the “workshop in a box” activities could be offered to other youth groups such as scouts, guides, after school clubs and even schools.

From the outset, the project team worked to explore and understand some of the challenges of reaching young people in this setting so that activities could be appropriately designed. Numerous logistical challenges of space, transportation, quick access and ease of use are compounded by more challenges of unknown numbers and age range of the young people, potential barriers young people may have to educational activities that might feel too much like school, and inevitable distractions in the environment.

Children taking part in a composites-based experiment

As a result, we developed a range of self-contained 10-15 minute long activities which can be deployed at different points in any order, in the session depending on the circumstances.  The session includes a range of ideas from discussion-based activities through to very practical hands-on manufacturing and testing activities.

The “NextCOMP Crusher” used before in NextCOMPs outreach and engagement delivery has been redesigned for ease of use and transportation and remains a favourite – what’s not to like about making and testing composites made from jelly and pasta? We have designed a set of new “composite cards”, a deck of themed cards using which can be played individually or collectively. In a material show of strength we have created the world’s first “composites tug of war” activity from clay and household objects. Our latest ‘challenge’ is showing the impact strength of chocolate – with the help of our fantastic engineering workshop, we have developed a flat-packed pendulum test to show the benefit of liquorice laces in dark chocolate – what’s not to love about that experiment!

Two sessions have already taken place (Henbury and Speedwell) with two more to go, and we continue to evolve and develop the activities and the guidance documentation as we deliver each session and encounter new challenges and engage with different young people.

Youth Club on Wheels Young Bristol lead Shea Stew said “This is an absolutely awesome project with well thought out activities, fun and to the point.. It makes science more obtainable for these young people.. The young people are getting something different out of it in the sense that they are learning and thinking about materials and the science behind [them].  Feedback from young people has been great, with young people who don’t like school having really enjoyed the activities and reporting back that they have since been paying more attention in science lessons.

Prof Richard Trask commented, “What an amazing experience… talking about the world around us to highly energised and inquisitive minds. Working with Young Bristol has been inspiring. I have learnt so much and continue to learn. The most important lesson is that there are plenty of budding composite engineers out there, we just need to find the funds and novel ways to get materials and engineering out into the community…”

For more details or any queries about the project contact Jo Gildersleve, NextCOMP Project Manager on jo.gildersleve@bristol.ac.uk