Bristol spinout raises more than £17.5m to deliver cutting-edge composites

University of Bristol spinout company iCOMAT has secured more than £17.5m in funding to deliver lighter transport solutions faster and at a lower cost.

iCOMAT is one of the leading manufacturers of advanced composite structures for the aerospace and automotive industries Image credit: iCOMAT

Founded by Dr Evangelos Zympeloudis, iCOMAT is one of the leading manufacturers of advanced composite structures for the aerospace and automotive industries.

iCOMAT’s Rapid Tow Shearing (RTS) process means carbon fibre tapes can be used in physically curved positions without being damaged or becoming defective.

Unlike traditional methods which create components by layering straight fibre layers, iCOMAT’s solution allows for the fibres to be directed precisely, optimising the structural property at any given point. The technology can significantly reduce weight compared to existing commercial solutions, and considerably improve production rates.

The investment round was led by 8VC, a technology and bio-sciences venture capitalist firm, alongside the NATO Innovation Fund. Other investor partners include Syensgo Ventures and existing iCOMAT investors Velocity Partners VC.

The Bristol-based company has had a long affiliation with SETsquared and its academic partners at the University of Bristol.

iCOMAT is currently working with more than 25 customers from across the aerospace, defence and automotive sectors, and has successfully delivered parts for demanding applications including fighter aircraft panels, space launcher structures, and Formula 1 components.

To meet demand, iCOMAT is in the process of building its first production factory in Gloucester. The state-of-the-art facility will house three RTS production lines, alongside an array of other advanced processing equipment. It is anticipated that the factory will be fully operational by the end of 2024.

iCOMAT founder and CEO, Dr Evangelos Zympeloudis, said: “Our RTS process not only offers unparalleled structural efficiency, but unlocks fully automated production workflows.

“We are thrilled to partner with our investors and accelerate progress toward our mission – to revolutionise transportation by delivering the lightest structures and vehicles possible.”

How can experienced professionals find research projects in their niche area?

Many experienced professionals can easily find research projects in their niche area, but young PDRAs and PhD students may not know how to find them. Research projects can offer opportunities for learning, networking, and career advancement. However, finding research projects that match one’s skills and interests can be challenging. For that reason, we will introduce some strategies and resources for finding research projects in your niche area.

  1. Identify your research interests and skills.

Identifying your research interests and skills involves introspection into your academic background, personal passions, and career objectives. Questions like, “What are the primary themes or issues that captivate me?” and “What gaps or challenges exist in my field of study?” can guide this reflection. Additionally, consider the skills or methods you enjoy using or learning, and ponder how you wish to contribute to the progress of knowledge or society.

To pinpoint your research interests and skills, explore diverse sources of information and inspiration. This may include perusing academic journals, books, or websites pertinent to your discipline. Seek input from current or past professors, colleagues, or peers who share your interests. Delve into online databases or platforms listing research opportunities or projects and explore professional associations or networks offering guidance for researchers.

To find meaningful projects, look for titles such as research assistant, research officer, or research specialist in relevant fields. Utilize keywords when searching on platforms like LinkedIn and ResearchGate to discover valuable opportunities.

  1. Explore existing research projects and opportunities.

One of the crucial skills for a researcher is the ability to investigate existing research projects and opportunities. This skill aids in discovering new collaborators, recognizing gaps in the literature, and identifying potential funding sources. Here are some suggestions on how to explore existing research projects and opportunities:

– Utilize online databases and platforms that aggregate research information, such as Google Scholar, ResearchGate, Scopus, and others. Conduct searches based on keywords, topics, authors, institutions, or citations to locate pertinent research papers, projects, and researchers.

– Attend conferences, workshops, seminars, and webinars aligned with your field of interest. Stay informed about the latest developments, trends, and challenges in your research area while networking with fellow researchers who share your interests. Additionally, consider presenting your own work to receive feedback from peers and experts.

– Join professional associations and societies that represent your research domain. Gain access to their publications, newsletters, events, and membership directories. Participate in committees, working groups, or special interest groups to contribute to their activities and initiatives.

– Initiate contact with potential mentors, advisors, or collaborators working on topics or methods that intrigue you. Reach out through email, social media connections, or request a meeting to inquire about their current or past projects, research goals and challenges, and seek advice.

– Explore your institution’s research resources and opportunities. Check your department’s website, bulletin board, newsletter, or email list for information on ongoing or upcoming research projects, events, grants, or awards. Engage with colleagues, supervisors, or administrators to learn more about their research interests and activities.

  1. Research out to potential collaborators and mentors

One of the key skills for a researcher involves reaching out to potential collaborators and mentors who can provide valuable feedback, guidance, and opportunities. However, many researchers face challenges in initiating and maintaining such professional relationships. Here are some effective tips for conducting research outreach:

– Clearly define your goals and interests before reaching out to anyone. Determine what you aim to achieve through collaboration or mentorship and what you can contribute in return. Whether it’s learning a new method, working on a specific project, or seeking career advice, consider how you can contribute to their research or objectives.

– Conduct thorough research on the individuals you intend to contact, including their background, publications, and current projects. Tailor your message to reflect your genuine interest and enthusiasm, and identify common connections, such as mutual colleagues, institutions, or interests, to establish rapport.

– Craft a concise and polite email for your initial contact. The first impression is crucial, so ensure your email is well-written, professional, and respectful. Briefly introduce yourself, explain the purpose of your contact, articulate what you hope to gain from the interaction, and inquire about their availability and preferred mode of communication. Be specific about your request yet remain flexible and considerate of their time and priorities. If relevant, attach your CV or portfolio, and provide a link to your website or profile.

– Follow up and maintain communication. If you don’t receive a response within a reasonable time frame, consider sending a gentle reminder or follow-up email after a week or two. However, avoid being overly persistent or pushy to prevent annoyance or pressure. If they agree to a conversation, prepare questions or topics for discussion, and be punctual, courteous, and attentive during the conversation. Express gratitude for their time and insights and follow up with a thank-you email afterwards. If they suggest any action items or next steps, promptly follow through and keep them informed of your progress.

 

For more information, feel free to contact the BCI internal newsletter team at uob-bci-internal-newsletter@bristol.ac.uk

The BCI Start-Up Companies Tackling Sustainable Engineering Innovation

The Bristol Composites Institute (BCI) has seen the beginnings of multiple start-up companies since starting as ACCIS in 2007. Playing host to a range of different engineering disciplines, it’s no surprise to see BCI start-ups tackling many problems affecting sustainable development today. Below is an overview of three start-ups led by former BCI PhD students who all graduated with PhDs from the ACCIS or CoSEM centres for doctoral training.

 

iCOMAT:

iCOMAT spun out of BCI and co-founded by CEO Dr Evangelos Zympeloudis and Dr ByungChul (Eric) Kim in 2019, and has since grown to 25 staff with blue-chip customers across Europe and USA. They are on a mission to unlock the performance of composites using their fibre steering technology and enable the lightest and the most structurally efficient composite products.

iCOMAT’s Rapid Tow Shearing (RTS) technology is the world’s first defect-free fibre steering process that enables the placement of carbon fibre tapes along curved paths without defects, enabling highly optimised structures. It was originated from the Continuous Tow Shearing (CTS) technology developed at Bristol Composites Institute. The novel process leads to drastically lighter components beyond the limit of conventional straight-fibre designs, while simultaneously lowering manufacturing cost. The process is ideal for high-volume production of complex high-performance composite components used in automotive and aerospace industries such as car frames, aircraft structures, and rocket structures. Such highly efficient structures lead to significantly lower CO2 emissions, both during use (lower weight, less fuel/energy) and during manufacture (minimum waste generation, more effective use of high-value carbon fibre materials).

 

Actuation Lab:

Simon Bates, Tom Llewellyn-Jones, and Michael Dicker have worked together as researchers for the last 10 years, optimising and simplifying technology for applications spanning the manufacturing, renewable energy, and marine sectors. In 2019, they spun Actuation Lab out of the University of Bristol, with a revolutionary approach to designing industrial hardware.

Aware that the use of hydrogen has the potential to eliminate over half the UK’s carbon emissions, but conscious of how hydrogen leaking from valves can have 11x the Global Warming Potential of CO2, they created the Dragonfly Valve. With an origami-inspired design, it requires the minimum amount of force to operate, preventing many of the leak paths of traditional valves. With help from partners like the Department for Business, Energy & Industrial Strategy, Actuation Lab is aiming to commercialise the Dragonfly Valve in time to meet the pressing needs of the UK’s energy supply.

 

 

Molydyn:

Matthew Bone started Molydyn to make computational chemistry more accessible to materials scientists, while undertaking his PhD with BCI, in June 2022. Computer modelling can provide direction to laboratory research, reducing costs, saving time, and eliminating waste. The pharmaceuticals industry has been using chemical simulation to discover new drugs for the last 40 years. However, materials science, which can benefit from using the same simulation tools, has seen minimal uptake in modelling.

To support computational chemists, Molydyn has created Atlas, a simple to use web platform that allows users to save 90% of their time pre-processing through automation. This makes using the popular modelling software LAMMPS much quicker and easier, helping new students to learn, and veteran users to research new sustainable materials faster. Molydyn has recently won a £25k innovation prize and Innovate UK funding to work with the Advanced Manufacturing Research Centre to develop case studies showcasing their ability to model polymers and plastics.

 

The BCI continues to support and promote the success of these start-ups.

BCI Co-Directors Prof. Stephen Hallett and Prof. Ole Thomsen: “We are delighted that fundamental research derived from novel and original ideas in Bristol Composites Institute has led to successful and highly innovative spin-outs. It serves as a testament to the impact of BCI’s research and the power of researchers in BCI in delivering added value to UK industry and society at large”.

Prof. Michele Barbour, Associate Pro Vice-Chancellor Enterprise & Innovation, University of Bristol: “The Bristol Composites Institute has a rich history of innovation and enterprise, and the four companies that are highlighted in this report are superb examples of that entrepreneurial spirit combined with world-leading engineering research and the commitment to realise the impact of that research outside of an academic environment. The companies Profs Thomsen and Hallett highlight here are diverse in their technology and focus but united in their aspirations to make real, lasting and impactful contributions some of our biggest global challenges, particularly to addressing climate breakdown and the need for truly sustainable processes and technologies. I will continue to follow the stories of these great companies and the inspiring people who lead them, and have no doubt that more exciting new spin-outs and start-ups will emerge from BCI in the months and years to come”.

 

 

New start-up ‘Molydyn’ by Matthew Bone

 

An image of the Molydyn logo

BCI members have gone on to launch a number of start-up companies over the years, and the latest is MOLYDYN, which has been established by Matthew Bone from the EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing (CoSEM CDT).

Molydyn is working to drive materials discovery with a new accessible approach to computational chemistry. Simulating polymers at the molecular level can help guide lab work, eliminating screening and accelerating the development of new sustainable materials. This leads to time saving, allowing researchers to use their effort more efficiently to discover other innovative solutions.

We asked Matthew about his experience of setting up his own company and what advice he would give to others, “For me, the toughest and most enjoyable part is getting out there and talking to people about what you do. It’s difficult as you’re asking people to judge something that is so personal to you, but the overwhelming majority of people are so kind, give fantastic feedback and wish you nothing but the best. My advice to people is take whatever idea you have and start getting people’s opinion on it. If you’re willing to change it, you’ll end up with something so much better than you could have achieved on your own.”

Molydyn is relevant now more than ever as the world needs new materials to enable more sustainable applications like:

  • Hydrogen storage
  • Carbon capture
  • Green energy

It takes 10-20 years for a new material to come to market and long laboratory trials are a slow stage of the development cycle. As companies embrace Industry 4.0 they are realising that simulation can guide their scientists and save significant amounts of time, money, and physical waste.

The challenge is running these complex simulations and getting accurate data that means something to the people in the lab. Molydyn’s managed simulation platform can help companies screen new materials in days instead of weeks, for half the cost of a laboratory trial.

You can read more about Molydyn at www.molydyn.com