Equity, Diversity and Inclusion Fellowship in Physical Sciences

The EPSRC recently awarded a large grant (£1.6m) to Professor Steve Eichhorn in the Bristol Composites Institute for a fellowship on “Realising Functional Cellulosic Bio-based Composites”. Fellowships are schemes that allow academics at all levels to focus on research, to make a difference in a field. This fellowship is slightly different, as it includes Equity, Diversity and Inclusion (ED&I). The technical work of the fellowship will focus on biobased and sustainable composites using cellulose towards functional materials. The ED&I aspect of the work will aim to improve the experiences and inclusion of Black students and staff.

ED&I in Engineering

Recent studies have highlighted that fewer than 1% of UK university professors are Black, with previous research showing that there are only 25 Black female professors in the UK.

“For many years during my career, I had been involved in ED&I work. It dawned on me that as a white male within academia not only was I the norm, but I also possessed a lot of privilege that had enabled my career. I also came to realise that I am also part of the problem, with most decision making and shaping of the culture in universities being directed by people who look like me.

The aim of this fellowship is to de-centre that approach, but to also engage more people of all ethnicities to tackle the problem of a lack ED&I of Black and Black heritage staff and students in STEM”, Professor Eichhorn reflects.

For the last 20 years, Professor Eichhorn has been researching the structure-property relationships of cellulose. His research groups have always been diverse, but he has recently realised that certain aspects could still be improved.

“My group over the years has included a wide range of people, with a very good gender balance, but also diverse ethnic, religious, class and cultural backgrounds. This has been a strength to the work we have produced over the last two decades. However, it is evident that people of Black and Black heritage have not been well represented in my group. This is something I have reflected on. This ED&I fellowship gave me a unique opportunity to address this issue and be part of a process of change.”

Cellulosic Bio-based Composites

George Washington Carver (c. 1864 – 1943)

There is a worldwide transition from the use of oil-based to more sustainable materials. This transition is happening due to dwindling oil stocks and a realisation that current levels of the use of this resource are no longer sustainable. However, this is not a new development, as pioneers such as George Washington Carver, working with Henry Ford, developed sustainable and biobased composites in the 1930s. We know from their work that sustainable sources for materials exist in the form of cellulose from plants. This material is a very versatile polymer and is in fact the most utilised material worldwide.

Nature makes use of cellulose to good effect. Being intrinsically strong and stiff means that cellulose fibres, per weight, can compete mechanically with most synthetic alternatives such as glass. In nature’s most prevalent natural composite – wood – cellulose forms the basis of its outstanding structural performance.

All our attempts to replicate the composite performance of wood and plants have fallen short, and this fellowship seeks to address these issues, while also using the intrinsic properties of plant fibres and wood themselves.

Fellowship Research Team

two women in white lab coats in a laboratory smiling at the camera
Dr Anita Etale (left) and Dr Amaka Onyianta (right) in the Bristol Composites Institute research laboratories.

After a search for the right applicants for postdoctoral positions, we were delighted to welcome two researchers – Dr Anita Etale and Dr Amaka Onyianta – with outstanding track records in cellulose research and the lived experience and passion to address ED&I with respect to Black and Black heritage staff and students. They combine these two passions and expertise and are already making an impact in the field.

“I am very glad to be part of this fellowship. This is a rare fellowship that combines my passion for making sustainable materials from nature’s most abundant polymer alongside the opportunity to engage in various ED&I projects that would empower Black and Black heritage staff and students in Bristol and hopefully, the UK at large”, Dr Amaka Onyianta says.

“I believe that representation is key to increasing diversity among the next generation of engineers. Being part of this fellowship gives me the opportunity to play my part in creating a future where ideas are enriched by varied experiences and approaches, and where people have opportunities to pursue the careers they are passionate about, and to contribute solutions to present and future global challenges”, Dr Anita Etale adds.

Find out more

Read more about this fellowship.

For more information, contact Dr Amaka Onyianta, Dr Anita Etale, or Professor Steve Eichhorn.

Working with Airbus in Composite Manufacturing R&T

We interviewed Bristol Composites Institute PhD student Michael O’Leary about his PhD project and the mutual benefits of working with Airbus on a cutting-edge research project.

How did you end up studying at the Bristol Composites Institute?

man looking at the camera smiling
Michael O’Leary

On leaving school, I realised I wanted to pursue a degree in Engineering, eventually specialising in Aeronautical Engineering and graduating with my bachelors from the University of Limerick. I had my final year project examined by Professor Paul Weaver, who recommended applying to the Bristol Composites Institute for PhD.

I decided that the Centre for Doctoral Training would be a great fit for me as I had enjoyed the research aspect of my final year. The collaborative environment of the CDT, being surrounded by people with similar research interests and skills, was a great selling point for me.

What are you working on?

My project is focused on integrated structures with semi-cured elements.

For future wing structure, we are moving towards more highly integrated and larger structures. As we make these integrated structures, we start to encounter some of the manufacturing challenges associated with the scale, such as element alignment and complexity.

The objective of my project is to break the integrated structure back down into smaller pieces and use them semi-cured as a building block to bring them back together. For instance, the state of the art for current structures manufacturing is using a skin, bonded stringers, and bolted ribs. Why not semi-cure each individual part and integrate them all together for a final cure?

How do you manufacture integrated structures with semi-cured elements?

The manufacturing process is a two-step curing process. The initial step is to create the semi-cured elements with a pre-designated degree of curing, somewhere between uncured and fully cured, hence the name. After the curing process, the semi-cured element can be stored, trimmed, and inspected. If they are of acceptable quality, they can then be integrated.

What are some of the manufacturing challenges when using semi-cured elements?

The main manufacturing challenges that we are facing are about determining the degree of curing and scaling, especially for more complex geometries as there are tooling requirements that can complicate the process.

Regardless of specimen manufacturing method fibre bridging was witnessed during DCB testing
Double Cantilever Beam tests were carried out on initially semi-cured and normal, single step, fully cured laminates, with both sample sets displaying similar failure patterns, and failure loads.

What are the next steps for this work?

The next steps are to continue to determine the optimal degree of cure for semi-curing along with better understanding how semi-cured interfaces are forming. Outside of this, we will continue to prove the feasibility of semi-curing by starting to produce parts at a scale greater than coupon level.

How will the project results benefit the academic and industrial project partners?

Proving the feasibility of this work will provide the industry with an additional manufacturing tool that they can use when designing future structures. Hopefully, my work will lead to further questions which can be posed to incoming PhD candidates.

How has your cooperation with industrial partners supported the development of this project or your skills?

My primary industrial partner is Airbus. The industrial supervisors have been very helpful and supportive providing important technical knowledge and ideas which have made their way into my work. Having an industrial project gives a different perspective, it really helps me to see how my work can be applied in the real world.

Through this industrial project, I had the opportunity to interact with one of the world’s largest aerospace manufacturers. It has helped foster relationships which would not have been possible outside of this project.

CerTest – Certification for Design: Reshaping the Testing Pyramid

One of the larger activities currently happening at the Bristol Composites Institute is CerTest. This EPSRC (UK Engineering and Physical Sciences Research Council) Programme Grant, with £6.9million of funding, started in July 2019 and will run for 5 years.

CerTest is led by Bristol Composites Institute Co-director, Professor Ole Thomsen at the University of Bristol, with academic collaboration partners at the University of Bath, University of Exeter, and University of Southampton.

The aim of the research in this multidisciplinary project is to develop new approaches to enable lighter, more cost and fuel-efficient composite aero-structures. This vision will be realised through four flexible but highly interlinked research challenges:

  1. Multi Scale Performance Modelling
  2. Features and Damage Characterisation
  3. Data-rich High Fidelity Structural Characterisation
  4. Integration and Methodology Validation

The four research challenges will result in a new approach for integrated high-fidelity structural testing and multi-scale statistical modelling through Design of Experiments (DoE) and Bayesian Learning.

The efficient exploitation and optimisation of advanced composite aero-structures is fundamentally prohibited by current test, simulation and certification approaches, and CerTest seeks to break this impasse by holistically addressing the challenges that are preventing step-changes in future engineering design by reshaping the ‘Testing Pyramid’.

The CerTest project is supported by seven key industry partners who provide important steer and valuable market insight along with several funded studentships. Airbus, Rolls Royce, BAE Systems, GKN Aerospace, NCC, the Alan Turing Institute, and CFMS meet with the CerTest team at least twice a year and are keen to see the research succeed.

The project is further supported by an Independent Advisory Board of experts from international and UK based academia, industry and regulators that provide further guidance and support to ensuring CerTest reaches its full potential and realises its goals and objectives.

This is one of the largest collaborations the Bristol Composites Institute has ever undertaken, and a lot of groundwork has gone into supporting the collaboration, flow and sharing of data between the partners. The current CerTest team has 37 members and counting.

group of co-workers standing in front of a building
The CerTest team at an internal meeting held at the National Composites Centre.

Further information

For more information and updates, visit the CerTest website.

SABRE – Novel blade technologies greatly improve helicopter efficiency

We interviewed the lead investigator of the SABRE projectDr. Benjamin Woods.

What is the SABRE project?

SABRE stands for ‘Shape Adaptive Blades for Rotorcraft Efficiency’. The four-year, €6 million, EU-funded project brings together a consortium of six research institutions from across Europe to develop ground-breaking new helicopter blade designs capable of changing shape in real-time to reduce noise, fuel burn and CO2 emissions.

Can you tell us what motivated this work?

In a word, sustainability. Reducing emissions from current flying technology is imperative if we want a credible chance to tackle climate change, hence developing new technologies that are more efficient and drastically reduce fuel burn is key to becoming more sustainable. 

How are you proposing to achieve better flying efficiency for helicopters?

yellow helicopter on the ground

Current designs for helicopter blades are rife with inefficiency.  The problem with helicopters is that blades will experience cyclic changes in airflow as they rotate. These differences in airflow velocity are detrimental to the performance of the rotor. This is a well-known issue and current rotor designs can change the overall pitch (orientation) of each blade as it spins around the helicopter to partially mitigate this issue. Unfortunately, the pitching solution is not ideal as it pitches the whole blade.  

Instead, we are proposing to develop different morphing concepts that will enable us to quickly and accurately control the shape of each blade and hence the airflow, during each rotation.  

What are these morphing concepts?

There are many key design parameters that should be considered when creating rotor blades. For example, you should ask ‘how much curvature is there in the aerofoil?’, ‘how does the length of the aerofoils vary over the blade?’, ‘how much twist is there in the blade?’. These are the types of features that engineers play with to optimise rotorcraft performance, with compromises being required due to the wide range of operating conditions. Those are the things that we would love to be able to change – but in real-time – to allow us to fully respond to the different operating conditions without the need to compromise. We are looking at exactly those factors. 

Six promising morphing blade concepts are being investigated. Two concepts can actively change the blade twist. Another two can actively change the aerofoil curvature (camber). One concept can increase the length of the aerofoil, and the last concept can alter the blade dynamic response.

Active camber, active chord, active tendons. active twist, and negative stiffness passive energy balancing.
Morphing concepts investigated by SABRE

What have you found out so far?

Using one concept at a time resulted in a fuel burn reduction of up to 5%, but when we looked at multiple concepts in different parts of each blade to attack different elements of physics, that’s when we saw significant reductions of up to 11%. There is certainly scope for further reductions, and with the right combination of technologies, fuel burn could be reduced by as much as 20%. 

What are your next steps?

It will be a while before this technology becomes mainstream. Development times of up to 30 years are “completely standard” for novel technologies in civil aerospace because the safety requirements are so rigorous. However, SABRE’s research could have applications elsewhere – more specifically, with renewable wind energy. This will likely be part of my next investigation.

Find out more

For more information, visit the SABRE Project website.