Smart tooling for Energy Efficient Composite Manufacturing

Radhakrishnan, A., Maes, V.K., and Kratz, J.

Conventional oven-based curing of thermoset composites is an energy-intensive process. This arises from the inefficient heating of a large volume of air combined with tooling that is typically 10-40 times heavier than the composite part manufactured on the tool. This large thermal mass potentially leads to a larger cure gradient, i.e., spatial change in temperature within the composite parts, and manifests as distortion or residual stresses both causing part failure, higher scrappage, and increase cost. Cure gradients can further be made worse by the exothermic reaction causing thick regions to become local hot spots as the part cures. To avoid cure gradients, manufacturers generally apply slow heating rates to allow heating to even out and reduce exothermic peaks. These slow heating rates in turn increase cycle times and energy consumption. Thus, the manufacturer is caught between the two competing priorities of quality and production rate. To push production rates while maintaining part quality, smart tooling solutions are required.

Researchers at the Bristol Composites Institute (BCI) typical features such as corners and ramps to evaluate two innovative approaches improving part quality while reducing cycle times and energy consumption: 1) direct zonally heated tools and 2) additively manufactured (AM) metal tools (Figure 2).

Graphic illustration showing test results

 

 

 

 

 

 

 

 

Figure 1. Benefits of out-of-autoclave curing of a complex part using zonally heated tooling with direct heating compared to using an oven.

 

Graphic showing the benefits of using AM Tool instead of a solid tool for curing complex part

 

 

 

 

Figure 2. Benefits of using AM Tool instead of a solid tool for curing complex part

Heated tooling introduces heat directly to the tool surfaces or volume through heated fluid circulation or heating elements. While this process reduces energy consumption by 45% compared to traditional oven or autoclaves curing process, as illustrated in Figure 1, the cost of heated tooling can be high. However, the true potential lies beyond energy efficiency, but rather in the ability to tailor the temperature profile applied to different regions. By introducing zonal heating, 17% faster cure cycles can be achieved while reliably ensuring high quality by reaching moulding temperatures quicker and more spatially uniform by the cure profile at the thick and thin regions (Figure 1). This allows for greater throughput, which ultimately results in cost savings and increased production capacity using a smaller factory footprint. Therefore, while the initial investment may be higher, the long-term benefits of zonally heated tooling make it a promising option for industrial applications.

In the feasibility study funded by the University of Bristol EPSRC Impact Acceleration Award, we explored the application of cure-kinetic coupled numerical simulations to design cure cycles for single and dual-zone heated tooling. The numerical predictions of the thermal profile were successfully validated experimentally using embedded thermocouples in the manufacturing of complex parts. The independent zonal thermal control approach reduced the spatial gradients in temperature and degree of cure without worsening the exotherm. Further developments are underway in applying machine learning, in-situ sensors, and advanced thermal management for adaptive cure control to manage heating as well as cooling to reduce overall cycle time and energy.

Additive manufacturing is one such enabling route that was explored in our feasibility study with the University of Bath funded by CIMComp Future Composite Manufacturing Research Hub. The use of AM removes design restrictions placed on monolithic tooling manufactured via subtractive processes like machining and milling. In the study, we explored lattice-based metal tooling manufactured via powder bed fusion for efficient composite curing. Lattice structures have repeating unit cells, and selecting the appropriate unit cell can improve thermal and structural properties like heat transfer and stiffness. Our work investigated a series of flat tools with a range of parameters including lattice geometry, density, and face sheet thickness to assess AM capabilities in meeting tooling requirements such as dimensional tolerances, stiffness and heating rate and found gyroid lattices performed exceptionally well. This lattice architecture was then translated to produce a tool for manufacturing a complex geometry

Direct zonal heated tooling reduced cycle time by 17% and energy by 45% while improving part quality with a reduced cure gradient. Combining this approach with AM tooling resulted in an additional 20% reduction in cure cycle time and a 45% reduction in energy use. Compared to conventional solid tooling using oven curing, the direct heating and AM design saved around 35% in cure cycle time and 70% in energy use. Future work on these innovative tooling concepts can have a considerable impact, particularly in designing cost-effective and energy-efficient tooling for manufacturing high-quality composite parts.

For further reference:

Zonally Heated Tooling for Moulding Complex and Highly Tapered Composite Parts|Frontiers|2023

A Feasibility Study of Additively Manufactured Composite Tooling| IAM2022 Proceedings| 2023

 

 

 

 

A Digital Twin for Composites Feedstock Characterisation

Koptelov A., Belnoue J.P-H., Georgilas I., Hallett S. R., Ivanov D.S.

The complexity of composites manufacturing stems from the nature of composite precursors—the combination of loosely-joined fibre network and liquid viscous resin—often heterogenous and enhanced with tougheners or functional additives. is compliant, deforms irreversibly, exhibits almost negligible resistance to axial compressive stresses and has a multitude of flow/deformation mechanisms (i.e., the internal or percolation flow of resin, flow of fibrous suspensions, densification of reinforcement, relative movement of plies, and others) – Figure 1. This makes precursors prone to defects at all stages of the composites manufacturing process.

One of the fundamental processes, universal almost for the entire range of composites manufacturing methods, is consolidation, where a composite precursor undergoes compression to engage plies in contact, squeeze out volatiles, control fibre volume fraction and thickness, obtain near-net component shapes, etc. This is a quality-critical process – deformability of composite precursors defines their susceptibility to defects, their compliance with dimensional tolerances, and the occurrence of shape distortions.

Example of flow mechanisms in the same prepreg at different processing conditions

Different forms of deformation mechanisms take place at different structural scales and often occur in parallel. It is essential to have a comprehensive understanding of all these processes to predict the evolution of precursors throughout all stages of composite processing and assess the final architecture/ properties of the composite structure. Each of these mechanisms can be described by material models with various formulations involving large number of material parameters that cannot be determined from direct experiments.

A potentially dangerous trap is that available experimental data are often limited as material testing is both complicated and time consuming. The information obtained in these tests may appear to be deficient and may not reveal all the underlying processes. In this case, property identification may provide a seemingly good fit irrespective of which mechanisms is presumed to happen. However, it does not mean that such model represents the physical reality, and it can often fail to adequately represent a wider set of experimental data. This sets a fundamental dilemma, as the material behaviour (i.e., the model selected) needs to be decided prior to conducting the tests, which introduces a strong subjective element. There is, therefore, a need for a new testing methodology that is capable to identify the deformation mechanisms as well as the relevant material properties. This methodology should be able to check different hypotheses on the deformation mechanisms and autonomously design a testing program based on the measured behaviour of the material.

We have recently developed such adaptive framework [1,2]. It presents a system for autonomous characterisation of materials subjected to an application of pressure and temperature. The system comprises conventional testing machine with heat plates and an integrated “digital brain”, which allows to make decisions on loading path in real time in a “conversation” with material and without human intervention – Figure 2.

Figure of Autonomous testing setup

Figure 2. Autonomous testing setup

The framework automatically identifies the characteristic flow processes and the properties associated with the correspondent deformation mode, such as viscosity. As a result of the process, the framework creates a reliable digital twin of the material representative over large range of processing parameters. The fully functioning prototype has been successfully tested for various material systems including toughened prepregs and dry fabrics. These curves are rather different from conventional loading programmes and show the complexity of testing needed to identify the underlying deformation mechanisms.

Figure 3. Real time characterisation (A) IMA/M21 prepreg, (B) IM7/8552 prepreg: purple - chosen trajectories, black - thickness samples response.

The digitally-driven framework does not just test the material, it defines which flow mode is happening within it and is capable of sensing fine characteristics of material state. The material properties come as a by-product of such examination. This methodology leads to reduced number of experiments while making sure that the obtained data is representative and sufficiently captures all the main features of the material behaviour.

______________

  1. Koptelov A., Belnoue J.P-H., Georgilas I., Hallett S. R., Ivanov, D.S. Revising testing of composite precursors – a new framework for data capture in complex multi-material systems, Composites Part A, 152 (2022) 106697.
  2. Koptelov A., Belnoue J.P-H, Georgilas I., Hallett S.R., Ivanov D.S. Adaptive real-time characterisation of composite precursors in manufacturing, Frontiers in Materials, 214.

Experimental characterisation of large in-plane shear behaviour of unidirectional carbon fibre/epoxy prepreg tapes for continuous tow shearing (CTS) process

Bohao Zhang and Byung Chul Kim*

The continuous tow shearing (CTS) process is an advanced automated fibre placement technique with the capability of steering unidirectional prepreg tapes using in-plane shear deformation, without generating tape buckling, gaps and overlaps which can be commonly seen in conventional automated fibre placement process. However, the inherent fibre misalignment within the tape can induce fibre waviness during the CTS process, which is affected by processing parameters such as temperature, shear strain rate and fibre tension. It is of importance to characterise the shear response of the prepreg tapes subjected to large shear deformation by considering the operation processing parameters used in the CTS process.

Two commonly used test methods to characterise the in-plane shear deformation of composite materials, i.e., the picture frame and bias extension tests, are not suitable for characterising unidirectional prepreg tapes. Alternatively, the off-axis tension test could be used, but specimens can only be sheared to small shear angles. Therefore, in this work, a bespoke test fixture was designed to shear unidirectional prepreg tapes at various shear strain rates and fibre tensions (see Fig. 1 which shows the working mechanism of the test fixture) and investigate the effect of shearing conditions. Digital image correlation (DIC) was used to obtain full-field strains of the specimens and to investigate the fibre realignment during shearing.

 

The bespoke in-plane shear test fixture used for shear deformation of a specimen. The image shows the specimen before (a) and after (b) shear deformation.

Figure. 1. The bespoke in-plane shear test fixture used for shear deformation of a specimen. The image shows the specimen before (a) and after (b) shear deformation.

 

The experimental results (see Fig. 2) showed that temperature is critical to the fibre realignment during shearing, as the viscosity of the resin matrix significantly influence the level of fibre re-arrangement during the shearing process, determining the shear resistance of the tape material. Thus, the local shear angle measured by DIC became closer to the global shear angle as the temperature increased. (The blue line in Fig. 2(b) is the ideal condition where the local shear angle is the same as the global shear angle, reflecting a perfect shearing.) The shear rate effect was almost negligible when the temperature was sufficiently high due to the reduction of the resin viscosity. High fibre tension allowed fibres to maintain the straightness during shearing. For the CTS process, an optimal processing temperature should be firstly determined. However, its impact on the tackiness of the resin for deposition and adhesion between the prepreg tape and the backing paper should be considered. A high fibre tension is preferable, but it requires a more robust structure of the deposition system.
Please refer to the original paper for more details. (https://doi.org/10.1016/j.compositesa.2022.107168)

Graphs showing test results

Figure. 2. Effect of temperature: (a) average material shear force vs. shear angle and (b) local shear angle vs. global shear angle for IM7/8552 specimens.

Unique Modelling Capability for Composite Manufacturing

The National Composite Centre (NCC) held an event focused on ‘Demystifying Digital Engineering’ on 23 March. This was an opportunity for guests to view and interact with a range of digital technology and skills demonstrators that accelerate engineering transformation, identifying efficiencies in product, process and technology development. This will inspire the next generation of engineers to engage with tools developed in the DETI (Digital Engineering Technology & Innovation) R&D initiative.

The Bristol Composites Institute (BCI) demonstrated a simulation tool that provides uniquely fast, and accurate simulations for the manufacturing of composite components. The automated simulation tools developed are available for industry use from BCI and the NCC, which results in significant cost savings per part by reducing the need for physical trials, which could in turn eliminate one or more design cycles. The University of Bristol also contributed to DETI with 5G work on Enabling Quantum-secure 5G enabled Mobile Edge Computing (MEC) for manufacturing, through the Smart Internet Lab, and the challenge of Enabling the Digital Thread in small engineering projects in work between CFMS and the University’s Engineering Systems and Design Institute.

People looking at the BCI stand at the event  People sat watching a presentation in a conference room

The Composites Perspectives Series

Last year the Bristol Composites Institute launched “Composites Perspectives”, a series of talks each focusing on different topics and including two composite-expert speakers. Since June 2022, the BCI has hosted three Composite Perspectives events, with the next one arranged for 11 July 2023 (details on how to register will be released soon).

The first Composites Perspectives event took place on 14 June 2022 and saw Professor Richard Oldfield (Chief Executive, UK National Composites Centre and Honorary Industrial Professor, University of Bristol) and Professor Pascal Hubert (Werner Graupe Chair on Sustainable Composites Manufacturing and Director at the Research Center for High Performance Polymer and Composite Systems, McGill University, Canada) discuss “Composites Role in Delivering Net Zero” and “Solutions for Zero Waste Composite Prepreg Processing”, respectively.

These talks became part of a wider ‘Sustainable Composites’ programme, and in September 2022 guest speaker Dr. Tia Benson-Tolle (Director, Advanced Materials and Sustainability, Boeing Commercial Aircraft) covered the importance of “Circularity and Recycling” within sustainable composites, and Professor Ian Hamerton (NCC Professor of Polymers and Sustainable Composites, University of Bristol) discussed the “High Performance Discontinuous Fibre technology (HiPerDiF)”.

The most recent event, which took place on 14 March 2023,  focused on Transformation in Engineering, with talks from Professor Mike Hinton, Consultant in Research and Technology Partnerships, High Value Manufacturing Catapult (“Engineering Transformation”) and Professor Ole Thomsen, Co-Director of Bristol Composites Institute and NCC Chair in Composites Design and Manufacture (“Towards virtual validation of composites structures – rethinking the testing pyramid approach”).

You can read about the previous events here and recordings of each session are available to view on the BCI Youtube Channel.

We look forward to inviting you to our future Composites Perspectives events.

BCI / NCC Joint Annual Conference, 10 November 2022

Last November, the Bristol Composites Institute and National Composites Centre presented the 2022 BCI NCC Joint Annual Conference, which addressed some of the key engineering challenges of our time, particularly focusing on how composites will ensure a net zero future for the UK.

The conference showcased the cross-TRL work we conduct together and how we can work in partnership with industry to advance and optimise their technology developments and fast-track innovation.

The morning session included updates from the NCC and BCI on their work in Sustainability, Hydrogen and Digital and the afternoon session focused on transitional research and how the gap between the technology readiness levels can be bridged. There was also a keynote presentation from Kate Barnard (WhatBox – Consultants facilitating mutually beneficial partnerships (whatboxltd.com)) which was followed by a panel session chaired by Michele Barbour and featured Matt Scott, Valeska Ting, Evangelos Zympeloudis, Kate Robson-Brown and Musty Rampuri and sparked plenty of thoughtful discussions between guests and speakers.

The conference, which was held at the NCC in Emersons Green, Bristol, welcomed over 60 people in-person, and had an additional 40 online attendees. Details of the 2023 joint conference will be released later in the year.

Guests listening to a presentation at the conference Guests listening to a presentation at the conference

Two BCI students win Best Presentation prize at International Conference MIMS22

by Fabrizio Scarpa

Congratulations to Mengzhou Yang and Wenfei Ji from the Bristol Composites Institute and the School of Chemistry of the University of Bristol for jointly winning the Best Student Presentation prize at the Multiscale Innovative Materials and Structures conference in Cetara. Mengzhou has presented the paper: “Numerical and experimental study of non-rigid foldable Origami bellows”, while Wenfei has described her work in: “Preparation of nanoclay/polymer coating for flexible polyurethane foam and the improvement of mechanical performance”.

Mengzhou is mainly supervised by Mark Schenk, Wenfei by Jeroen van Duijneveldt and Wuge Briscoe. Fabrizio Scarpa is co-supervisor of both students. The Bristol Composites Institute was well represented in the conference, with other presentations made by Xindi YuKeyao Song and Gianni C. on novel tensegrity structures, beetle elytra and Tesla valve acoustic metamaterials. The work of the students has been supported by China Scholarship Council, UKRI and European Research Council (ERC). Special thanks go to the University of Bristol Engineering and Faculty of Sciences of the University for the further support provided to the students. MIMS22 has been an excellent conference showcasing top speakers in the field of metamaterials and architected materials.

A collage of photos showing the Amalfi coast and BCI students winning their award at the MIMS22 event

Promoting Sustainability by Solving Wind Turbine Design Challenges

Photo of Terence Macquart Photo of Alberto PirreraPhoto of Paul Weaver

 

 

 

by Terence Macquart (terence.macquart@bristol.ac.uk), Alberto Pirrera, and Paul Weaver 

Wind energy is recognised as one of the greenest sources of energy, meaning that energy produced from wind turbines is generally less harmful to the environment than other energy sources, especially coal and gas. In other words, substituting fossil-based fuel with wind power is a great leap toward a more sustainable future. Although wind energy today only contributes a small fraction to the total energy consumed worldwide, considerable societal efforts are being made to build more turbines and wind farms to increase our wind energy capacity and hence produce cleaner energy. This is obvious in the UK, where the government aims to reach 50 MW of installed capacity by the end of 2030, quintupling its current wind energy capacity, a formidable aspiration. 

Modern wind turbine technology has rapidly evolved over the past decades to meet the rising demand for wind power. This can be seen by the gigantic size of modern turbines, dwarfing even the largest aircraft ever created. Such large and complex systems come with engineering and sustainability challenges of their own. The wind blade research hub (WBRH) is a collaboration between the University of Bristol and the Offshore Renewable Energy Catapult (OREC) that aims to address some of these challenges, as illustrated by the breadth of our work in the Figure below. Read more about each challenge addressed by researchers at the WBRH in the following paragraph. 

Figure 1 : Overview of the wind blade research hub activities at the University of Bristol (REF: Mackie (2020) Establishing the optimal conditions for rotating arm erosion testing, materials characterisation and computational modelling of wind turbine blade rain erosion)

 

Infographic of wind turbine resaearch

Improving wind turbine performance with holistic design tools: 

Photo of Samuel Scott
by Samuel Scott; Terence Macquart terence.macquart@bristol.ac.uk

Although the design of wind turbines appears to be mature because we are repeatedly exposed to the familiar 3-bladed upwind turbine design, we know that their performance and sustainability could be further improved. However, wind turbines are also complex systems, and it is, therefore, very difficult, even sometimes impossible, to fully understand the impact that a change in design can have on the overall turbine performance. To overcome this challenge, our group has developed a sophisticated set of analysis and design tools which can navigate the complex design space of wind turbines and helps us better understand the design trade-offs we can make to improve them, leading to non-conventional designs as shown in the figure below. Reducing weight, also called light weighting, is a prime example of how such tools can help the wind industry; that is, by achieving a better understanding of aerodynamic and inertial loads on blades we can design lighter and more efficient blades, resulting in less raw materials being needed and more energy generated over the turbine lifespan. If you are interested in reading more on this topic, see the work of Dr. Samuel Scott (https://research-information.bris.ac.uk/ws/portalfiles/portal/312520978/Thesis_SamScott_Final.pdf). 

Figure 2: Non-conventional design planform of a 15MW wind turbine blade, outperforming conventional designs. AC: Aerodynamic Centre, FA: Flexural Axis

Graphic of a graph   

Wind Turbine End-of-Life:

Photo of Ian Hamerton
by Ian Hamerton & Terence Macquart

Large wind turbine blades require very strong material such as carbon fibre reinforced polymers which cannot currently be recycled effectively at large scales. As a result, at their end-of-life blades often go to landfills or are incinerated. In such cases, the costly carbon fibres making up the blade are lost, and new virgin material must be made. However, manufacturing virgin carbon fibres requires manufacturing process that are energy demanding and emit a lot of greenhouse gases. By contrast, materials that can be recycled, such as the steel making up the wind turbine tower, typically requires less energy to be made re-usable and emit less greenhouse gases (e.g. recycling steel reduces greenhouse gases emission by about 70-80%). The WBRH has two strands of research aiming to reduce the carbon footprint of wind turbines. The first one aims to rethink the design of modern turbines, using comprehensive design tools and life cycle analysis methods, to create new designs that can be made of more sustainable material. The second research strand investigates scalable ways in which we can recycle carbon fibres into new structural components, hence diminishing the overall environmental impact of wind turbine blades (Ian, Hyperdif, Lineat). 

Leading Edge Erosion: 

Photo Imad Ouachan Photo of Robbie Heering

by Imad Ouachan and Robbie Heering

 Leading edge erosion has   developed into a significant issue for the wind industry. Raindrops, hailstones, and other particles impacting the leading edges of the blades cause material to be removed. This leaves a roughened blade surface, which degrades the aerodynamic performance of the blade, and hence its power production. The problem appears to be accelerated offshore due to high blade tip speeds and harsher operation environments. Viscoelastic Leading Edge Protection (LEP) systems are applied to the leading edge of blade to mitigate the onset of erosion. However, there is currently no LEP that lasts the lifetime of the turbine and regular repair is required. It is estimated that the issue costs £1.3m per turbine over its lifetime [X]. To support the development of improved LEP systems, the WBRH has worked with industrial LEP companies to investigate two key areas: (i) an understanding of the viscoelasticity of LEP systems and (ii) mechanisms to test and predict LEP performance. On the former, the WBRH has developed bespoke techniques to understand the drivers of LEP erosion performance by expanding knowledge in strain and frequency dependent behaviour and measurement techniques, including dynamic mechanical thermal analysis, acoustic measurement, and nano indentation. On the latter, a prediction model to relate an LEP’s test performance to its in-situ performance has been developed. This included an exploration of current erosion testing mechanisms to enhance their ability to realistically evaluate performance and the first characterisation of a wind turbine’s erosion environment. Together these two pieces of research have developed significant understanding of the drivers of erosion and important material properties, providing the wind industry with tools to further develop LEP systems and combat the important challenge of leading edge erosion. 

Modular blades: 

Photo of Alex Moss
by Alex Moss

The overall aim of this work is to enable faster,  cheaper, and easier production of wind turbine blades, which will help to reduce global dependence on fossil fuels. This is achieved through additive manufacturing, which will be used to build the internal structure of the blade. Acting as the composite layup surface, this would replace the costly and energy intensive steel-backed composite moulds currently used. Introducing automation into production process could lead to the creation of an assembly line, helping to make the 3 blades per day required to hit 2030 wind energy targets. To design these novel blade structures, topology optimisation is used to find the lightest possible configuration, reducing material use and energy. The wider industry is beginning to use recyclable materials to cut down on landfill waste at the end of life. The printed material takes this one step further, using recycled chopped carbon and glass fibre inside a recyclable resin. The printed material also replaces the balsa wood cores, into which the resin leaks during infusion which is wasted material and makes the balsa unrecyclable.  

Advanced numerical models:

Photo of Sander Van den Broek
by Sander Van den Broek

As blades increase in length, they become increasingly difficult to structurally model. Traditional approaches using shell elements cannot accurately model the torsional stiffness as failure modes that become more important at larger length scales. At the same time, solid elements found in commercial finite element software are limited to lower-order descriptions of displacement fields. Convergence using lower order solid elements would require an excessive number of elements, becoming computationally prohibitive. Ongoing work at the WBRH is to develop higher-order structural modelling techniques that can simulate the nonlinear stresses and evaluate the stability of large wind turbine blades. 

Composites for Hydrogen Storage for Green Aviation

by Valeska Ting v.ting@bristol.ac.uk; James Griffith james.griffith@bristol.ac.uk; Charlie Brewster c.d.brewster@bristol.ac.uk; Lui Terry lt7006@bristol.ac.uk  

 

Of all of the modes of transportation that we need to decarbonize, air travel is perhaps the most challenging. In contrast to road or marine transport, which can realistically be delivered with battery or hybrid technologies, the sheer weight of even the best available batteries makes long-haul air travel (such as is needed to maintain our current levels of international mobility) prohibitive. Hydrogen is an extremely light, yet supremely energy-dense energy vector. It contains three times more energy per kilogram than jet fuel, which is why hydrogen is traditionally used as rocket fuel.   

Companies like Airbus are currently developing commercial zero-emission aircraft powered by hydrogen. A key challenge for the use of hydrogen is that it is a gas at room temperature, requiring use of very low temperatures and specialist infrastructure to allow its storage in a more convenient liquid form. To deliver this disruptive technology Airbus are undertaking a radical redesign of their future fleet to enable the use of liquid hydrogen fuel tanks[5].

A jet flying in the sky

In its liquid form, hydrogen needs to be stored at –253oC. At these temperatures, traditional polymer matrices are susceptible to microcracking due to the build-up of thermally induced residual stresses. Research at the Bristol Composites Institute at the University of Bristol is looking at how we can develop new materials to produce tough, microcrack resistant matrices for lightweight composite liquid hydrogen storage tanks. 

We are also looking at the use of smart composites involving nanoporous materials – materials that behave like molecular sponges to spontaneously adsorb and store hydrogen at high densities– for onboard hydrogen storage for future aircraft designs. Hydrogen adheres to the surface of these materials; more surface area equals more hydrogen. One gram of our materials has more surface area than 5 tennis courts, with microscopic pores less than 1 billionth of a meter in diameter. These properties allow us to store hydrogen at densities hundreds of times greater than bulk hydrogen under the same conditions. Whilst simultaneously improving the conditions currently needed for onboard hydrogen storage. Our research looks to improve this by tailoring the composition of these materials to store even greater quantities of hydrogen beyond the densities dictated by surface area.  

With hydrogen quickly becoming recognised around the world as the aviation fuel of the future, France and Germany are investing billions in ambitious plans for hydrogen-powered passenger aircraft. To keep pace with the development of new aircraft by industry, there is a parallel need for rapid investment into refuelling infrastructure at international airports to allow storage and delivery of the liquid hydrogen fuel. Urgent investment to also upgrade the hydrogen supply chain is imperative. The UK Government’s announcement of new investment in wind turbines and offshore renewables will certainly boost the UK’s ability to generate sustainable hydrogen fuel and presents additional opportunities for new industries and markets.  

It seems industry is finally ready to take the leap away from its reliance on fossil fuel to more sustainable technologies. Decisive action and public investment into upgrading our hydrogen infrastructure will allow us to realise the many benefits of this and will make sure the UK remains competitive in this low-carbon future.

 

 

Images and permissions available from: 
https://www.airbus.com/search.image.html?q=&lang=en&newsroom=true#searchresult-image-all-22  

References:  

[1] Hydrogen-powered aviation – A fact-based study of hydrogen technology, economics, and climate impact by 2050 https://www.fch.europa.eu/sites/default/files/FCH%20Docs/20200507_Hydrogen%20Powered%20Aviation%20report_FINAL%
20web%20%28ID%208706035%29.pdf
[2] Liquid Hydrogen–the Fuel of Choice for Space Exploration https://www.nasa.gov/content/liquid-hydrogen-the-fuel-of-choice-for-space-exploration 
[3] Airbus looks to the future with hydrogen planes
https://www.bbc.co.uk/news/business-54242176 
[4] Liquid Hydrogen Delivery
https://www.energy.gov/eere/fuelcells/liquid-hydrogen-delivery 
[5] Airbus reveals new zero-emission concept aircraft https://www.airbus.com/newsroom/press-releases/en/2020/09/airbus-reveals-new-zeroemission-concept-aircraft.html 
[6] Bristol Composites Institute
http://www.bristol.ac.uk/composites/ 
[7] Nanocage aims to trap and release hydrogen on demand https://www.theengineer.co.uk/nanocage-hydrogen-gas/ 
[8] Engineering porous materials
https://www.youtube.com/watch?v=TNqLeO61huM 
[9] France bets on green plane in package to ‘save’ aerospace sector https://uk.reuters.com/article/us-health-coronavirus-france-aerospace/france-bets-on-green-plane-in-package-to-save-aerospace-sector-idUKKBN23G0TB 
[10] Germany plans to promote ‘green’ hydrogen with €7 billion https://www.euractiv.com/section/energy/news/germany-plans-to-promote-green-hydrogen-with-e7-billion/ 
[11] EU Hydrogen Roadmap https://www.fch.europa.eu/sites/default/files/Hydrogen%20Roadmap%20Europe_Report.pdf 
[12] Boris Johnson: Wind farms could power every home by 2030 https://www.bbc.co.uk/news/uk-politics-54421489  

Natural Fibre Composites Research

Testing the Mechanical Performance of Nature Fibre Composites.

Head shot of Owen Tyley by Owen Tyley owen.tyley.2019@bristol.ac.uk; Tobias Laux tobi.laux@bristol.ac.uk; Neha Chandarana neha.chandarana@bristol.ac.uk 

Manufacturers are increasingly looking to develop new natural fibre composites (NFCs) to lower the environmental impact of structures such as wind turbine blades and automotive panelling. For these to be brought to market, their mechanical performance must be understood throughout their operating temperature range. This is ordinarily conducted using strain gauges, though the cost of purchasing and installing strain gauges makes this a relatively expensive undertaking. By contrast, digital image correlation (DIC) is an optically-based imaging technique which can determine the strains on an object such as a standardised testing coupon, at much lower cost. However, the reliability of DIC for composite coupons at elevated temperatures is not well-understood. 

Black and white photo of natural fibre composites

As part of a summer internship project supported by the Henry Royce Institute for Advanced Materials, the tensile moduli of flax- and carbon-fibre reinforced polymers using both DIC and strain gauges at temperatures up to 120°C were compared. Preliminary results suggest that the modulus as determined through DIC is the same as for strain gauges, but with greater uncertainties. It is therefore suggested that DIC could be a suitable method for determining the mechanical properties of NFCs for non-safety-critical applications, and as part of early-stage research and development for new natural-fibre composites. 

 

Flax: A sustainable alternative to glass fibres in wind turbines?

 

 

 

by Abdirahman Sheik Hassan a.sh.2019@bristol.ac.ukNeha Chandarana neha.chandarana@bristol.ac.uk ; Terence Macquart

Flax-fibre composites have been widely praised as a high-performance sustainable alternative to synthetic fibres in the composites industry. However, as with many natural fibre composites, the mechanical properties (strength, stiffness) of flax-fibre composites do not match up to their synthetic counterparts. This study assesses the suitability of flax-fibre reinforced composites as a replacement for glass-fibre composites in the context of a wind turbine blade using a life cycle engineering approach.Research on a computer screen Finite element analysis (FEA) was used to determine the design alterations required for comparable performance, followed by a cradle-to-grave life cycle assessment to ascertain the subsequent environmental impact of these alterations. The preliminary results show a significantly greater volume of material is required in a flax-fibre blade to match reserve factor and deflection requirements; however, these models do show reduced environmental impact compared with the glass-fibre composite blades. End-of-life options assessed include landfill and incineration, with and without energy reclamation. 

 

Amphiphilic Cellulous for Emulsion Stabilisation and Thermoplastic Composites.

Headshot of Amaka Onyianta Headshot of Steve Eichhorn by Amaka Onyianta a.j.onyianta@bristol.ac.uk; Steve Eichhorn s.j.eichhorn@bristol.ac.uk

Biobased polymers, commonly referred to as bioplastics, are made from plant or other biological material instead of petroleum. They, therefore, present opportunities for the development of sustainable plastics from a wide range of pre-cursors including corn, vegetable oil and cellulose. Cellulose, the most abundant polymer on earth, is also renewable material available from vast resources such as wood, plant, bacteria and even sea animal tunicates. Considerable research efforts have been put into developing cellulose-based biopolymers. However, despite all its advantages, cellulose due to its hydrophilic (water-loving) nature presents a significant challenge with respect to blending with other polymers which are often hydrophobic (water-repelling).  

Diagram showing amphiphilic cellulose coated polypropylene composites

To address this challenge, our group is exploring surface modification of cellulose to make it hydrophobic. One such modification we have investigated results in a material that is not only hydrophobic, but largely retains the inherent hydrophilicity of cellulose, leading to an all-new class of material: amphiphilic cellulose. Due to this amphiphilic nature, the cellulose can stabilise oil-in-water emulsions, making it attractive for various applications including in the personal care products sector where consumer desire for nature-based products is increasingly driving demand.    

It is also recognised that while material sources can be sustainable, processing techniques also need to be sustainable for this credential to hold for the final product. Work within our group is therefore also looking into aqueous processing of amphiphilic cellulose with thermoplastics to yield biobased sustainable composite materials with improved tensile modulus. Moreover, the melting profile of the thermoplastic is not affected by the process, neither is a pre-step of compounding needed as seen in the traditional process for incorporation of fillers in thermoplastic composites.